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Abstract—An Internet datagram delivery service between
space systems only provides end-to-end addressability. 
Building systems and performing actual spacecraft
operations requires a variety of services operating over the
Internet datagram delivery service.  This paper discusses
ways to use the capabilities of the upper layer Internet
protocols to support the varied communication needs of
satellites.  It focuses on protocols in the transport layer
(layer 4) and application layer (layer 7) which use the basic
packet delivery capabilities of the Internet Protocol (IP) and
the network layer (layer3). 

The transport layer primarily adds data stream multiplexing
and reliable data delivery options for use by applications. 
Data stream multiplexing is provided by the port
mechanism in the User Datagram Protocol (UDP) and the
Transport Control Protocol (TCP).  UDP provides a basic
packet delivery service similar to that used in today's
spacecraft while TCP provides an automatic retransmission
capability for reliable data stream delivery.  Data streaming
is also supported by the Real Time Protocol (RTP) which
operates over UDP.  Each of these protocols has benefits
and limitations in various space communication
environments with a range of link errors, propagation
delays, and bit rates.  Transport protocol selection and
operational usage are discussed with respect to satellite
communication requirements. 

Finally, actual spacecraft operations are performed by using
applications running over transport protocols.  The use of
standard Internet applications such as NTP, FTP, SMTP,
and telnet is discussed with respect to satellite operational
requirements.  The actual use and performance of many of
these protocols by the Operating Missions as Nodes on the
Internet (OMNI) project at NASA/GSFC on orbit with the
UoSAT-12 spacecraft is also described.
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1. INTRODUCTION

This paper will discuss the use of standard Internet
applications and protocols to meet the technology challenge
of providing dynamic communication among heterogeneous
instruments, spacecraft, ground stations, and constellations
of spacecraft.  The objective is to characterize typical
mission functions and automated end-to-end transport of
data in a dynamic multi-spacecraft environment using off-
the-shelf, low-cost, commodity-level standard applications
and protocols.  These functions and capabilities will become
increasingly significant in the years to come as both Earth
and space science missions fly more and more sensors and
the present labor-intensive, mission-specific techniques for
processing and routing data become prohibitively expensive.
This work is about defining an architecture that allows
science missions to be deployed “faster, better, and cheaper”
by using the technologies that have been extremely
successful in today’s Internet.

2. OVERVIEW OF INTERNET PROTOCOLS IN SPACE

The goal of the OMNI project is to define and demonstrate
an end-to-end communication architecture for future space
missions.  The authors have combined their knowledge and
experience in Internet technologies and space
communication systems in developing the following end-to-
end data communication concept.

End-to-End Network Concept

The data communication requirements of many advanced
space missions involve seamless, transparent connectivity
between space-based instruments, investigators, ground-
based instruments and other spacecraft.  The key to an
architecture that can satisfy these requirements is the use of
applications and protocols that run on top of the Internet
Protocol[1] (IP). IP is the technology that drives the public
Internet and therefore draws billions of dollars annually in
research and development funds. Most private networks also
utilize IP as their underlying protocol. IP provides a basic
standardized mechanism for end-to-end communication
between applications across a network.  The protocol
provides for automated routing of data through any number
of intermediate network nodes without affecting the
endpoints.

Proposed Architecture

Recognizing the clear benefits of IP as an end-to-end
networking protocol, the OMNI project developed a
reference system architecture for the space and ground



segments of future IP missions.  The goals were to
maximize the use of commercial-off-the-shelf (COTS)
hardware and protocols while avoiding creating any new
"space-specific" solutions. A high-level view of this
architecture appears in figure 1.  Several notable features are
present, and are discussed in the following sections.

3. LAYERED M ODEL

The Internet suite of protocols, and the OMNI reference
architecture, is based on the OSI seven-layer model of
networking, but with some differences. In the OSI model,
there are seven distinct layers. Starting from the lowest,
they are:

1. Physical - Raw bits, coding (wire, fiber, RF)
2. Link - Packets (HDLC,FDDI, ATM, ethernet)
3. Network - end-to-end addressed datagrams (IP)
4. Transport - multiplexed packets (TCP, UDP)
5. Session - login, authentication
6. Presentation - formating, translation
7. Application - user data

In the Internet implementation, layers 5 - 7 tend to be
compressed into a single application layer.  For example,
the Internet file transfer application "FTP" incorporates
elements of the session layer (user login), presentation layer
(translation of ASCII files), and application layer (transfer
user files).

The important thing to note in the system architecture in
figure 1 is the commonality of IP as the network layer. This
allows everything above the network layer to operate
independently of the type of link used.  Similarly, in the
lower layers, different hardware drivers can be substituted
without affecting the specific applications being run.

4. LOWER LAYERS

In the reference architecture developed by the OMNI project,
certain choices were made for the Physical Layer (RF &
coding), link layer (HDLC) and network layer (IP).  The
issues and rationale behind these choices are beyond the
scope of this paper.  These important topics are the subject
of a separate paper titled "Link and Routing Issues for
Internet Protocols in Space".[2]

5. TRANSPORT LAYER

The transport layer has the major function of providing
stream (or packet) multiplexing of multiple channels into a
single link.  This logical multiplexing is distinct from any
physical-resource multiplexing that occurs lower down in
the link layer.  All Internet transport layer protocols provide
this capability, commonly referred to as "ports" or
"sockets".

This multiplexing capability is one of the most important
aspects of Internet transport layer protocols.  It provides the
ability to transparently mix thousands of unrelated
asynchronous data streams on a single physical link,
without the applications that generate the data needing to be
aware of each other or the layers below.  This "virtual
channel" capability even provides for intermixing multiple
transport protocols on the same physical link. Each
transport protocol has its own separate set of 65,535 ports.

Prioritization of these "virtual channels" is handled down in
the network layer (layer 3) by assigning different queuing
priorities to unique port-protocol combinations.  This is a
standard feature found in most IP routers in use today, and
was successfully used by the OMNI project to prioritize
mixed streams of data. 
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These capabilities match well with the telemetry
requirements of modern spacecraft, which often have
hundreds of "application IDs", representing many separate
asynchronous data streams running at different priorities.

Beyond multiplexing, Internet transport protocols have a
wide range of different capabilities and limitations. There
are two main transport protocols currently in wide use on
the Internet: Transport Control Protocol[3] (TCP) and User
Datagram Protocol[4] (UDP). Although TCP is the most
well known of these protocols, it is important to make the
distinction that not all IP is TCP/IP. In addition, a third
transport protocol, Realtime Transport Protocol[5] (RTP),
is in common use but is generally implemented "on top of"
UDP instead of as a separate protocol with its own protocol
id. Each protocol has it's own strengths and weaknesses.

Selection of a transport protocol for a particular type of
spacecraft or instrument data is mission specific, and would
be driven by the mission requirements and system
engineering tradeoffs. There is no single "one size fits all"
answer.

UDP

UDP is a connectionless transport protocol designed to
operate over IP.  Its primary functions are error detection
and multiplexing. UDP does not guarantee the delivery or
order of packets, but guarantees that if a packet is ever
delivered with errors, such errors will be detected.  Because
the UDP format is simple, it has a low overhead.  See
figure 2. It is also fast compared to TCP since there is no
connection establishment phase.

UDP provides "atomic packet delivery". This means that the
application will never see a partial or fragmented packet
(regardless of any fragmentation and reassembly performed
by the lower layers).  Delivery of a packet to the application
layer is all-or-nothing.

These characteristics make UDP the protocol to use when
the timeliness of the data is more important than getting
every packet.  Examples of this include spacecraft
engineering data, health & safety telemetry, and blind
commanding.

UDP is a "send-and-forget" protocol. Packets are addressed
to their network endpoint and sent on their way without any
connection phase or handshaking.  This has both advantages
and disadvantages.  On the plus side, it means that the
protocol will work with highly asymmetric or unidirectional
links, is completely delay-insensitive, and supports multi-
cast. These characteristics make it well suited for deep-space
missions, such as Mars.  On the minus side, UDP does not
provide flow control or reliable transport.  If these features
are required with UDP, they must be built on top of it at
the application layer, as in today's spacecraft protocols.  The
following section on the Application Layer discusses several
examples of UDP-based applications that take this approach.

RTP

RTP is used to carry data that has real-time properties. It
provides end-to-end delivery services for data with real-time
characteristics, such as interactive audio and video. Those
services include payload type identification, sequence
numbering, timestamping, and delivery monitoring.
Applications typically run RTP on top of UDP to make use
of its multiplexing and checksum services, but both
protocols contribute parts of the transport protocol
functionality.  See figure 3 for a diagram of the additional
12 bytes of header that RTP adds onto UDP. RTP (and
UDP) supports data transfer to multiple destinations using
multicast distribution if provided by the underlying IP
network.

RTP is most well known for streaming audio and video on
the web, in products such as Real-Video and QuickTime,
and is used for Voice-over-IP (VoIP). Although originally
designed for supporting audio and video over packet
networks, RTP is also useful for transporting any
isochronous data where the timing of the data is important.

RTP provides hooks for adding in reliability and flow
control if these features are required.

TCP

TCP is a connection oriented transport protocol designed to
work in conjunction with IP. TCP provides the application
layer with the ability to reliably transmit a byte stream to a
destination, and allows for multiplexing multiple TCP
connections on a single host.  It provides flow control, and
has "out-of-band" handling for priority messages.  A
diagram of the TCP header is shown in figure 4.

Being connection oriented, TCP requires a connection setup
phase, followed by a data transmission phase.  A connection
is terminated when it is no longer in use.

The reliability and flow control of TCP requires that status
information be sent with each packet, and acknowledgement
be received back from the recipient.  This allows TCP to
recover from data that is damaged, lost, duplicated, or sent
out of order.

These characteristics make TCP a protocol to use when the
overriding requirement is for the error-free  transfer of data. 
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Examples of this include downloading instrument science
data, and uploading spacecraft or instrument command
loads. Many off-the-shelf applications are built on top of
TCP and can perform this function.  In many cases, reliable
transfer of instrument data files directly to the scientist can
completely replace traditional level-0 processing.

Along with TCP's capabilities come some limitations.

Because of the handshaking and flow control, TCP requires
a bi-directional link.  This link can exhibit only a moderate
amount of asymmetry (~50:1) before throughput is affected.

Because TCP is a windowed, buffered protocol, it is
sensitive to the Round Trip Time (RTT) delay.  With
increasing RTT, larger window buffers are required in order
to maintain throughput.  But larger buffers exact a larger
penalty when a packet is lost and has to be retransmitted. 
In practical terms, what this means is that TCP will perform
fine out to about lunar distance.  In particular, TCP has
been successfully used at geosyncronous distance at over
400 megabits per second[6].

TCP currently has no mechanism for distinguishing loss
due to congestion from loss due to noise. This means that
increasing noise will reduce throughput as retransmission
timeouts increase.  The OMNI project has performed
experiments which have shown that single-session TCP
bandwidth utilization falls to under 60% at an error rate of
10-5; however, through the use of forward error correction
codes, (FEC), most space missions operate at an error rate
of 10-7 or better. At these rates, TCP's bandwith utilization
approaches its theoretical maximum of ~92%. In addition,
current standards activities, such as Explicit Congestion
Notification[7] (ECN), Selective Acknowledgement[8]
(SACK), and TCP/Peach[9], are underway to make TCP
more "satellite friendly".

6. APPLICATION LAYER

While transport protocols enable the exchange of data, more
functionality is required to perform useful work. This is the
domain of the application layer.

There are many standard application layer protocols, such as
HTTP, SMTP, FTP and Telnet.  Most of these are defined
in RFCs, are widely implemented, and interoperate
universally. Many of them are capable of handling a large
variety of space mission requirements. Self-defined
protocols are also possible. Designing your own protocol
for your application has the advantage of being flexible,
lightweight, and efficient, but has the disadvantage of being
non-interoperable with other applications.  Each mission
needs to make that decision based on its own requirements
and the cost/benefit tradeoffs.

UDP based Applications

UDP applications can be divided up into several categories
that are relevant to spacecraft operations.

Simple data delivery — In general, a simple custom
application would be required to wrap application-specific
telemetry or command packets in a self-defined protocol.
This is functionally equivalent to current space missions
using CCSDS framing and packet protocols.  It may even
make sense to use the CCSDS packet (not frame) formats
inside of UDP, as the CCSDS packet structure is already
defined.

Reliable file transfer with UDP — A number of standard
applications/protocols are available to perform reliable file

transfer via UDP. These include Pacsat Broadcast
Protocol[10] (PBP), Multicast File Transfer Protocol[11]
(MFTP), CCSDS File Delivery Protocol[12] (CFDP),
Network File System[13] (NFS), and Trivial File Transfer
Protocol[14] (TFTP). PBP, MFTP and CFDP are of
particular interest for deep space missions because they can
operate over a mostly unidirectional link. They send out all
the file's packets nonstop without waiting for any
handshake. Sometime later, (a minute, an hour, a day) a
brief return link is required to transmit a list of NAKs for
any packets that were lost. These packets then get resent on
the next contact. This makes these protocols delay
insensitive, just the thing needed for missions at L1 or
Mars and beyond.

Time Synchronization — The Network Time Protocol[15]
(NTP) is a UDP based protocol and application that is used
to synchronize the time of a computer client or server to
another server or reference time source. Typical NTP
configurations utilize multiple redundant servers and diverse
network paths, in order to achieve high accuracy and
reliability. Some configurations include cryptographic
authentication to prevent accidental or malicious protocol
attacks. A space mission using NTP would typically place
its primary timeserver right at the groundstation to
minimize delay variations and maximize security.

TCP Based Applications

TCP applications can be divided up into several categories
that are relevant to spacecraft operations.

Reliable Simple Data Delivery — As with UDP, a simple
custom application would be required to wrap application-
specific telemetry or command packets in a self-defined
protocol.  The difference here is that TCP takes care of
automatically performing any retransmissions required to
guarantee delivery of every data byte.  In the commanding
case, this is similar to current missions using the CCSDS
COP-1 protocol.  In the telemetry case, there is no current
system implemented to perform automatic retransmissions
and reliably deliver every data byte. Current missions either
tolerate any lost data or manually retransmit the entire data
set a second time in an attempt to fill in any losses.

Reliable File Transfer with TCP — There are two main
application-level TCP-based file transfer protocols that are
widely available and instantly familiar to anyone who uses
the Internet: File Transfer Protocol[16] (FTP) and Hypertext
Transfer Protocol[17] (HTTP).  FTP is the older of the two,
and tends to be more efficient in its use of persistent
connections, but is more complex to implement.  HTTP, on
the other hand, is extremely simple to implement in a small
memory footprint, but sets up and tears down a connection
for every transfer. 

Hundreds of implementations of each of these protocols are
available both commercially and as freeware applications.
These are a very good match for the needs of science
missions, which often have large quantities of prerecorded
data that must get shipped to the scientist with maximum
fidelity.

Email — Simple Mail Transfer Protocol[18] (SMTP), as
defined in STD-10/RFC-821, specifies the protocol used to
send electronic mail (e-mail) between TCP/IP hosts. E-mail
is probably the most widely used TCP/IP application. The
basic Internet mail protocol provides mail and message
exchange between TCP/IP hosts. Facilities have been added
for the transmission of binary data which cannot be
represented as 7-bit ASCII text.



SMTP is based on end-to-end delivery; an SMTP client
will contact the destination host's SMTP server directly to
deliver the mail. It will keep the mail item being
transmitted until it has been successfully copied to the
recipient's SMTP server.  SMTP servers can also be set up
as "mail gateways" to implement a "store and forward"
delivery system.  In either case, the mail is always
addressed to the end user.

In space-based applications, SMTP can provide the
scientists and spacecraft operators the capability of sending
and receiving commands and data when they are not in
contact with the spacecraft, and having those files
automatically queued and delivered without further human
intervention. This "batch" or "bundled" mode of data
transfer very closely matches the requirements of many
space missions. It can be easily and cost-effectively
accomplished with commercial off-the-shelf applications
without inventing any new "space-specific" protocols.

7. SPACE VS TERRESTRIAL ISSUES

There are a number of apparent issues for space-based usage
of Internet protocols. These are often misunderstood or
misrepresented. A recent quote in Space News stated: "The
environment for the Internet is basically no delays, no
errors, continuous connectivity, and pretty symmetric data
transfer. If you look at the space environment, it's almost
completely reversed. There are high delays and high error
rates. The links are not continuous or symmetric."  If this
description of the Internet were true, we would all have
continuous 100 MBit/Second connectivity to our PCs and
cell phones.  Instead, we have 56 kBit/Second dialup
modems, micropower cell phones that run 2400 baud if they
can make a connection, and network delays that sometimes
run up into the seconds. So, even though on the surface it
would appear that "space is special" and has unique
problems, upon careful examination, each of these problems
can either be found to be a non-problem, or to have a
terrestrial parallel that has been solved in the commercial
world.

Long Delay

Often it is stated that space missions must be carried out
with "Round trip delays much greater than ground
systems"[19], and that "...long propagation times cause
terrestrial protocols to operate sluggishly or fail
outright"[19].  For low earth orbit (LEO) missions, which
represent  the large majority of space missions, this is
simply not true.   A LEO spacecraft  is only 200-400 miles
away when it passes overhead.  Since RF travels at the
speed of light, this translates into only a 4 mS round trip
time!  Even at the horizon, which for a spacecraft in a 400
mile high orbit is approximately 3000 miles away, this is
about a 32 mS round trip time.  Compare this with typical
Internet ping times from Baltimore to Los Angeles of 100
mS and the LEO spacecraft  should actually run TCP/IP
better than coast-to-coast terrestrial links. Even out to
geosynchronous orbit, the round trip delay time is only 240
mS.  Experiments have been performed at the NASA Glenn
Research Center[6] using the ACTS satellite, which have
operated TCP at over 400 megabits/second at this distance.
These experiments used ACTS as a "bent pipe", so a round
trip required two hops to geosynchronous distance, or
around 480 mS.  TCP is limited by its bandwidth-delay
product, requiring a transmission window buffer of equal or
greater size. This means that low-bandwidth/high-delay
TCP connections are similar to high-bandwidth/low-delay

ones. Laboratory experiments have suggested that lunar
distance, with its 1666 mS round trip time, would require
some care in setting up the connection, and represents the
practical limit for TCP based applications.  Beyond this
distance, deep space missions, such as Mars, should look to
using one of the delay-insensitive UDP based protocols,
such as MFTP, PBP, or CFDP.

Noise

Frequently, it is pointed out that most packet losses on the
Internet are due to congestion, whereas most losses on a
space-to-ground link are due to noise. TCP has no
mechanism for distinguishing packet loss due to noise from
packet loss due to congestion, so it always assumes
congestion and responds to noise by slowing down.  This
feature of TCP is often used to imply that all Internet
protocols operate sluggishly or fail outright in the presence
of noise. This is not true for UDP based protocols. UDP
does not perform flow control and never attempts to throttle
the data.

Many terrestrial environments feature noisy channels that
successfully carry TCP traffic.  The best example of this is
the ordinary dialup telephone line. The telephone line has a
bit error rate (BER) that is similar to most spacecraft RF
links. The CCITT recommendations for voice circuits that
have been conditioned to carry data[20] is a BER of 10-5.
Similarly, NASA typically specs its spacecraft RF links at a
BER of 10-5. The reason TCP works over the phone lines is
that the modem applies error correction down at the physical
layer, transparently to the upper layers. This allows the
upper layers to behave as though they have a clean link.
Similarly, NASA applies error correction to it's space links,
achieving operational BERs down to 10-7 or better. At 10-7,
handshaking protocols, such as TCP/IP, work well.

In addition to this, current standards work is in progress to
make TCP itself less sensitive to uncorrected noise loss. 
These include ECN, SACK (which is already widely
distributed), and TCP/PEACH.  These efforts are driven, in
part, by the explosive demand for Internet-enabled cell
phones and wireless devices, which must operate in an
inherently noisy, low power environment.

Power, CPU, and Bandwidth Constraints

The previously mentioned wireless/cell-phone industry must
operate in an environment that is far more severely
constrained than that of most spacecraft. Electrical power,
CPU processing power, and RF bandwidth are limited to an
embedded device that fits in a shirt pocket.  Much as in a
deep space mission "every bit is precious", so ongoing
research and development is being aimed at protocols that
are efficient and error tolerant, such as IP header
compression[21] and Cellular-IP[22].  These efforts are
being coordinated through the Internet Engineering Task
Force (IETF), so the resulting non-proprietary standards will
interoperate and be available to all. In fact, given the huge
potential size of the Internet cell phone market, it seems
possible that in a few years, a large amount of Internet
traffic will flow over cellular protocols.

Intermittent Connectivity and Variable Routing

Spacecraft that are not in a geosynchronous orbit cannot
maintain continuous direct contact with the ground.
Contacts are limited to a brief time when the spacecraft
passes within line-of-sight of the ground station. For a low
earth orbit, this "pass" is typically no more than 8 to 15



minutes long, a few times a day. If more contacts are
needed, more ground stations must be used, complicating
the routing of data to and from the spacecraft. 

This situation is very similar to people with laptop
computers.  They, and their computers, change locations
and intermittently connect to the network at different points.
But they want to maintain just one IP address. The
Mobile–IP[23] protocol was designed to handle just this
problem.  Using it, mobile users can maintain a single
Internet address while connecting to the network at different
locations. Through the actions of a "home agent" and one or
more "foreign agents", a "care of" address is established that
allows transparent end-to-end addressing of data to and from
the mobile host.  This protocol does exactly what an IP
spacecraft  needs in order to send and receive data using
multiple ground stations.

Forward/Return Path Asymmetry

Most spacecraft have a much greater downlink bandwidth
than uplink bandwidth. This asymmetry is often incorrectly
attributed to the fact that spacecraft are limited by their
power and weight budgets, and cannot generally support
large steerable high-gain antennas. While this fact is true, it
is not what limits the uplink data rate. Up to a point, any
shortcomings of the spacecraft antenna or receiver can be
compensated for by more power and bigger antennas on the
ground. The real limitation is driven in part by physics, but
mostly by convention.

In the early years of space exploration, most missions had
modest uplink requirements for commanding. As a result,
the standard RF systems for the evolving Spacecraft
Tracking and Data Network (STDN) came to modulate the
uplink signal on a 16 KHz subcarrier, reserving the main
carrier for ranging tones.  Although this choice was adequate
for the times, today this legacy of "STDN compatibility"
limits the uplink channel to about 8 KBits/second instead
of the 2 MBits/second that is possible when BPSK
modulating the main S band carrier.

In any event, TCP will typically run with asymmetries of
up to 50:1 before throughput begins to be affected.  For an
8 kbps uplink this corresponds to a 400 kbps downlink.
Although far below the maximum possible, this data rate
is adequate for more than half of the current science
missions. And this asymmetry limitation only affects TCP.
 UDP based protocols can always downlink at the full rate.

Missions that want to use TCP above the 400kbps rate will
have to use a communication system that is not based on
the 16 KHz subcarrier uplink.  The NASA Tracking and
Data Relay Satellite System (TDRSS) is one such system. 
Experiments with a ground-based IP spacecraft simulator
were able to establish a symmetric 1 MBit/second duplex
link through TDRSS using nothing more than a 5 watt
transmitter and an 18" steerable patch antenna.[24]

8. IP-BASED OPERATIONS SCENARIOS

An IP-based communication architecture can support all
existing operations concepts and makes some new, complex
concepts realistic.

For example, real-time engineering and housekeeping data
can be monitored during a pass using UDP/IP packets. This
only requires a uni-directional downlink. On the other hand,
if a bidirectional link is available, guaranteed reliable
delivery of data packets can be achieved by using TCP/IP.
In both cases, only a simple application layer function needs
to be written for the flight software. The TCP/IP stack is
available as a standard COTS product for current flight
operating systems such as VxWorks.

Recorded science and engineering data can be stored onboard
in files in a standard COTS file system. These files can later
be transferred to the ground with guaranteed complete, time-
ordered records using an off-the-shelf application such as
FTP. If the round-trip delay times are too great to use a
TCP-based protocol such as FTP, a UDP-based protocol,
such as Starburst/MFTP, could be used instead.

Onboard clock synchronization, typically a thorny problem,
can be handled by using the NTP.  NTP can automatically
calculate propagation delay times, time variance, and drift
rates, relative to one or more reference timeservers.  It can
set the spacecraft’s clock and even perform periodic drift
mitigation. The NTP protocol is capable of precision on the
order of 240 picoseconds if sufficient bandwidth and CPU
speed are available.

Store-and-forward commanding, and data delivery, can be
achieved by using SMTP to deliver the files as email
attachments.  For example, in the commanding case, the
control center emails the command load to the spacecraft as
an attachment.  A mail server at the groundstation stores the
file until the next contact and then automatically transfers it
to the spacecraft for processing.  Similarly, in the data
delivery case, the C&DH processor, or even a “smart”
instrument, emails the data file as an attachment to a
message sent to the principal investigator. The onboard mail
server stores the file until the next contact and then transfers
it to the ground for automatic delivery to the owner of the
data.

The IP suite supports various commanding scenarios. When
the downlink is not available for acknowledgement, “blind”
real-time commands can be sent to the spacecraft using
UDP.  This is required for emergency situations such as
rescuing a spacecraft from tumbling.  For nominal
operations, reliable commanding can be achieved by using
TCP, which automatically takes care of performing the
handshaking and any necessary retransmissions.

These basic capabilities, and the end-to-end network
addressing capability of IP, can be used to support new,
complex scenarios. These include user interaction, spacecraft
cross-support, and ad-hoc collaborations.

These scenarios also highlight the capabilities needed for
constellations of spacecraft. Formation flyers could send
messages back and forth to keep their group navigation
within specifications. Constellations of nanosats could
message their data to larger members with the power for
delivery to the ground.



9. PRESENT RESULTS

At the present time, the OMNI project has successfuly
performed both ground-based and on-orbit validation tests
of many of the concepts described in this paper. In
particular, on-orbit testing of UDP telemetry delivery, NTP
(operating over UDP) and FTP (operating over TCP) were
successfully completed. Some results are presented here, but
for full details, refer to the papers titled "Demonstrations of
Internet Protocols in Space Using TDRSS"[24] and "Results
of  'Internet in Space' Tests Using UoSat-12" [25].

On-Orbit Clock Synchronization with NTP

For the clock synchronization tests, a standard NTP client
was ported to the UoSAT-12 spacecraft. It was used to
automatically synchronize the onboard clock to UTC. On
the ground, the US Naval Observatory's timeserver
(tick.usno.navy.mil) was used as the reference timeserver.
This represents somewhat of a worst-case test, as the USNO
is a quarter of the way around the world, over 20 router
hops, from the UoSat-12 ground station in Surrey, UK. In a
real operations environment, a timeserver of the required
accuracy would be located at the groundstation to minimize
the network latency and variation that NTP has to factor
out.  However, NTP is designed to deal with these factors,
and the resulting levels of accuracy might be quite adequate
for many space missions even under worst case conditions.

Two tests were performed, both following the same
scenario. The tests started out with the onboard NTP server
running, but disabled from actually changing the spacecraft's
clock. The onboard server periodically negotiated with the
USNO timeserver to factor out network delay. If it was
successful, the onboard server calculated the offset it

thought it had to apply to the spacecraft's clock. This value
was sent to the ground in a UDP telemetry stream, where it
was logged for later analysis. For purposes of this testing,
the NTP negotiation period was set artificially low to 30
seconds so that a reasonable number of data points could be
collected during the 14 minute pass. A short time into the
test, a command was sent to the spacecraft to enable NTP to
actually change the onboard clock. NTP requires two
successful offset calculations before it will adjust the clock.
Later in the test, a command was sent to the spacecraft to
manually set the onboard clock in error by a large amount
(2-3 seconds). After two successful offset calculations, NTP
should again reset the clock. If the time is off by more than
one second, the spacecraft NTP client adjusts to the proper
second during one adjustment period, and adjusts for
fractional seconds on the next adjustment period.

The results for the test run on April 14, 2000 are shown in
figure 5. The pass began with a spacecraft clock offset from
UTC of approximately +300 ms. Two calculations after
NTP time-changing was enabled, the calculated offset
dropped to less than two clock ticks (20 ms) and stayed
there until it was manually set in error from the ground. A
ground command was used to set the clock ahead by
approximately 3.25 seconds. Two offset calculations after
that, NTP had reset the clock to within six clock ticks of
UTC, taking an additional two offset calculations to settle
within two clock ticks of UTC.
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Figure 5 - NTP Clock Synchronization Test Results



Error-Free Downloads with FTP

Current space missions, such as Landsat-7, download their
image data "open-loop", without any automatic
retransmission. Any data lost due to noise is lost forever. 
As a result, Landsat-7 employs large ground antennas and
strong Reed-Solomon forward-error-correction in order to
reduce its nominal bit error rate down to the range of 10-7 to
10-9.  Even so, image data is sometimes still lost.  Figure 6
shows a typical "dropped scan line" image that results from
a small data loss. 

UoSat-12 does not employ any forward-error-correction, and
its groundstation employs modest antennas.  As a result,
UoSat-12's downlink only has a typical bit-error-rate
between 10-5 and 10-6. Conventional open-loop space
mission protocols would provide badly degraded data at
best.  What is required is an application built on top of a
protocol that performs automatic retransmissions, such as
FTP over TCP.

For the initial FTP tests, a standard FTP server was ported
to the UoSat-12 spacecraft. It was used to provide reliable,
error-free transport of UoSat-12 image data to both the
groundstation and remote user sites using off-the-shelf FTP
client applications.  For subsequent tests, packet trace
software was installed on UoSat-12 and at the ground sites
in order to capture and quantify the number and types of
lost packets and retransmissions.

Figure 7 shows a result of tests performed on June 7, 2000.
 This mosaic consists of four sequential images of Perth,
Australia that were downloaded from UoSat-12 via FTP
with 100% data integrity, despite numerous packet losses. 
Note the lack of any data loss artifacts, such as dropped scan
lines, shear misalignment, or pixelation.

The cost of this reliability in the face of adverse bit-error-
rates is a reduction in performance.  Our laboratory tests
have shown that FTP/TCP performance is not significantly
affected at bit-error-rates below 10-7. Above this,
performance falls to around 60% bandwidth utilization at
10-5.

Subsequent FTP testing on July 5, 2000 began to
characterize the on-orbit performance. Figure 8 shows the
packet trace for a typical file download.  This 227 kByte file
required 445 packets and experienced 9 retransmissions, all
due to packet losses on the downlink.  These
retransmissions are noted by the "O" label, signifying
receipt of an out-of-order packet. Seven of the nine were
single packet losses, which allowed the TCP "rapid-
retransmission" algorithm, but two were multiple packet
losses, which resulted in a retransmission timeout. The
overall result of these retransmissions was a reduction in
bandwith utilization to 79.2% compared to a theoretical
maximum of 91.6%. These results are preliminary, but are
in good agreement with the laboratory testing.

Figure 6 - Landsat-7 Image Showing Noise Induced Scan Line Loss



10. FUTURE WORK

The activities so far have been done in fairly simple and
controlled configurations.  More work is needed to
investigate additional protocols required to properly deploy
Internet protocols in worldwide, operational space

communication networks.  Implementing HDLC framing
and IP packets on spacecraft and installing routers at ground
stations are not major problems.  The main issues are to
deal with network security and the highly mobile aspects of
spacecraft. 

The OMNI project is in the process of expanding its test
environment to include multiple spacecraft simulators and
ground nodes for testing mobile IP and mobile routing

Figure 7 - UoSat-12 Images Downloaded Error-Free with FTP

Downlink trace at SSTL:

227 kBytes
59.7 seconds

445 packets

9 Retransmissions

30.4 kbits /sec

Figure 8 - Packet Trace of UoSat-12 Download with FTP



protocols.  These investigations plan to use the Linux and
VxWorks operating systems on the spacecraft simulators
and Cisco IOS 12.1 or newer software on the ground
routers. 

Security solutions based on Internet security protocols[26]
(IPsec) and virtual private networks[27] (VPNs) will be
configured and tested along with the mobile IP
environment. 

The mobile IP and security work will focus on issues for
deploying IP in operational space communication networks.
 Additional work is also planned to identify spacecraft
control and data delivery applications to use over a space IP
network.  One of the main application areas to be
investigated will be reliable file transfer in space
environments.  This will focus on file transfer applications
that operate over UDP and that can then operate in
communication environments with extremely long round-
trip times and link bandwidth asymmetry.

Current information on test results and future activities will
be posted on the OMNI project web site at
http://ipinspace.gsfc.nasa.gov/   .

11. CONCLUSIONS

The current activities have demonstrated that standard
Internet protocols will function in a space environment and
are useful and effective in typical spacecraft operations.

The speed and ease with which UoSat-12 was adapted to use
Internet protocols have demonstrated that this is a cost-
effective solution for space missions.  The conversion of the
spacecraft, conversion of the groundstation, and the initial
tests were completed in only 5 months at a cost of only
$50k.

The last 22 months of tests and demonstrations have shown
that HDLC framing and IP packets provide a very simple
and flexible communication mechanism for space
communication. HDLC framing is well supported in a wide
range of COTS products and has been used on over 20
spacecraft for over 10 years.  Using the Internet Protocol as
a network layer allowed easy integration and testing of our
end-to-end scenarios.  Also, both HDLC and IP required no
modifications to operate in intermittent space link
conditions.

While many of the Internet protocols (i.e. TCP, FTP, NTP)
work in full-duplex communication scenarios, we have also
successfully used others (i.e. UDP) in either receive-only or
transmit only scenarios. During the NTP tests described in
this paper, a one-way UDP based telemetry stream was used
for diagnostics and statistics data. These one-way data
transmission modes must be supported in order to deal with
spacecraft contingencies when a full-duplex link is not
available.  This is just one more case of the Internet
protocols being flexible enough to support a wide range of
requirements.

Finally, introducing a network protocol like IP in the
communication architecture has allowed us to easily support
a wide range of communication scenarios and mission
scenarios.  Using IP has allowed us to communicate around
the world and introduce new applications very quickly and
easily.  Most of the traditional interface control documents
(ICDs) are eliminated since the Internet standards are already
well specified, highly interoperable, and widely available.
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